WHAT TO TURN IN (upload answers to Focus-Portal):
KWL chart; Questions 1-6, 2 Calculations (Data Table n and o)

OBJECTIVES

To learn about collection of gases in the absence of an in-person lab.
To review the combined gas law equation.
To review the concept of STP.
To solve the combines gas equation for V_{2} at STP conditions.

BACKGROUND INFORMATION

It is difficult to find the mass of a gas produced in an experiment. You can trap the gas and measure its volume in a eudiometer or gas measuring tube. The volume occupied by one mole of any gas at standard temperature and pressure (STP) equals 22.4 L . We will use this conversion factor in the experiment.

In this experiment you will determine the volume of gas evolved in a reaction between magnesium metal and hydrochloric acid, and from your results determine how many liters of gas would be produced under STP conditions. You will need to convert room temperature and pressure to standard conditions (STP) in order to compare your results.

$$
\frac{\mathbf{P}_{1} \mathbf{V}_{1}}{\mathbf{T}_{\mathbf{1}}}=\frac{\mathbf{P}_{2} \mathbf{V}_{\mathbf{2}}}{\mathbf{T}_{\mathbf{2}}} \quad \text { at STP: } \mathrm{P}_{2}=760 \mathrm{~mm} \mathrm{Hg}, \mathrm{~T}_{2}=273.15 \mathrm{~K}
$$

PROCEDURE

1) Set up one KWL chart. Fill in the K part first. Leave the other columns blank for now.
$\mathrm{K}=$ What do you KNOW already about gas collection and the combined gas law
$\mathrm{W}=$ What do you WANT (or need) to know about gas collection and the combined gas law
$\mathrm{L}=$ What did you LEARN about gas collection and the combined gas law
2) Watch the following short videos:
https://www.youtube.com/watch?v=6dmtLj2dLi0 to 2:00
https://www.youtube.com/watch? $\mathrm{v}=\mathrm{g}-05 \mathrm{H} 4 \mathrm{y} 6 \mathrm{lGc}$ to $2: 51$
https://www.youtube.com/watch?v=BBWXMQJDx3E to 7:30
3) Fill in the rest of the KWL chart.
4) Look at the data table on the next page before answering the questions.

QUESTIONS

1) Write the balanced chemical equation for the reaction of magnesium metal with hydrochloric acid.
2) When the tube is inverted, why doesn't the reaction occur immediately?
3) Why is copper wire a good substance to use to hold the ribbon?
4) Why should the tube be filled completely with water before inversion?
5) How could you test if the gas was actually hydrogen? (HINT: go back to the chapter 8 chemical reactions lab, single replacement section).
6) When the gas is collected, why do we assume it is "wet"?

DATA TABLE from period 3 3/7/2020

a) length of magnesium ribbon
b) mass of magnesium ribbon
c) moles of magnesium used
d) room temperature, Celsius
e) room temperature, $\mathrm{K}\left(\mathrm{T}_{1}\right)$
f) barometric pressure $\left(\mathrm{P}_{\text {atrmosphere }}\right)$
g) volume of gas collected $\left(\mathrm{V}_{1}\right)$
h) " x "
i) $x / 13.6$
j) water vapor pressure $\left(\mathrm{P}_{\mathrm{H} 2 \mathrm{O}}\right)$
k) corrected pressure of dry gas $\left(\mathrm{P}_{1}\right)$
l) standard temperature $\left(\mathrm{T}_{2}\right)$
m) standard pressure $\left(\mathrm{P}_{2}\right)$
n) volume of hydrogen gas at $\operatorname{STP}\left(\mathrm{V}_{2}\right)$
o) volume of hydrogen from 1 mol Mg at STP see hint below
molar mass conversion
measured with ruler $\quad 4.5 \mathrm{~cm}$
from electronic balance $\quad 0.07 \mathrm{~g}$
0.003 mol
$21.5^{\circ} \mathrm{C}$
294.7 K
769.62 mm Hg
77.0 mL
120. $\mathrm{mm} \mathrm{H}_{2} \mathrm{O}$
8.82 mm Hg
19.231 mm Hg
741.6 mm Hg
273.15 K

760 mm Hg
\qquad mL
(n) Use the combined gas law to calculate the volume that would be occupied by the gas under STP conditions.
(o) From your calculations, a fractional part of a mole of Mg was determined (step c), since the pieces of Mg used in lab were very small. Use this information to calculate the volume of hydrogen gas produced if one mole of magnesium reacted with excess hydrochloric acid at STP:

$$
\frac{\text { your } \mathrm{V}_{2}, \text { in } \mathrm{mL}}{\text { your \# of moles }}=\frac{? \mathrm{~mL}}{1 \mathrm{~mole}} \quad \text { or } \quad \frac{(\text { step } \mathrm{n})}{(\operatorname{step~} \mathrm{c})}=\frac{? \mathrm{~mL}}{1 \mathrm{~mole}}
$$

At STP, 1 mol of gas $=22.4 \mathrm{~L}$. Since we used mL in lab, 1 mol of gas $=22,400 \mathrm{~mL}$. Unfortunately, because of the equipment limitations - especially with the electronic balance - the final answer is limited to only one sigfig.

How close were you to $22,400 \mathrm{~mL}$?

